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SUMMARY

In polymer chemistry, it is often of imterest to know what are the gases
evolved during the degradation of polymers. Cross-correlation chromatography
(CCC) permiis on-line measurements of an arbitrary number of points on the
cvaluation rate curve for any evolved gas component, but the rapid changes in the
composition of gases generate noise in the chromatograms calculated, which might
exceed the detector signal. It is shown that by using a suitable computation al-
gorithm it is possible to suppress the correlation noise in the calculated chro-
matograms Computer-simulated patterns are presented to show the usefulness of
CCC in evolved gas analysis and its advantages over conventional gas chromato-
graphy in this field.

INTRODUCTION

The use of computers in analytical chemistry has increased markedly in the
last decade. Laboratory-scale digital computers are acquiring a major role in the
design of laboratory instruments and several new computer-based analytical tech-
nigues have been developed. A typical example is Fourier transform spectroscopy,
in which each resolution element is measured simultaneously, i.e., the information or
a signal channel is multiplexed, and a computer calculates the desired spectrum. In
chromatography, this kind of experiment has been known since the first report of
Izawa et al.! of the techanique of cross-correlation chromatography (CCC). Although
several examples of the application of the techniques are known>—*, CCC has never
been used extensively. Unless applications can be found that cannot conveniently be
carried cut by standard chromatographic methods, CCC will not be used sub-
stantially. Ancther reason for the limited use of CCC is, in our opinion, the fact that
although the theory of the method is well established, its mathematical relationships
are not simple to understand and deter workers who might otherwise be potential
users.

The first part of this paper is therefore devoted to a simplified presentation of
the theory. The cross-correlation theory usually formulated via a convolution integral®
is here formulated via a circulant matrix. This approach seems to be more natural
because computations in CCC are performed on a digital computer and con-
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tinuous functions must be replaced with the sequence of numbers. Only an
elementary knowledge of matrix algebra is assumed by the reader. '

The second part of the paper deals with the accuracy of CCC. The baseline
instability of the correlated chromatogram was discovered in previous experiments on
CCCS-%. This phenomenon was explained as an effect of changes in sample con-
centration’® during the experiment. Because these changes are frequently of interest
(e.2., 1n evolved gas analysis), the question arises of whether it is possible to detect
accurately the changes in sample concentration in the presence of correlation noise.
The problem of correlation noise is discussed here in a stricter form. It is shown that
under some conditions “ghost” peaks may appear on the de-correlated chromatogram.
We observed the “ghost™ peaks during our first CCC experiments. It is interesting
that “ghost™ peaks were also observed in Hadamard transform spectroscopy®, the
mathematical basis of which is similar to that of CCC. The other distortions of the
deiector signal that are dealt with here are linear basecline drift in the original (not
de-correlated) chromatogram and the effect of high-frequency noise. For each of
these distortions we obtain an equation that determines the standard deviation of the
noise on the de-correlated chromatogram.

The third part of the paper discusses a possible new application of CCC in
evolved gas analysis. It is shown that CCC should be particularly valuable in this
field arnd it has substantial advantages over conventional chromatcgraphy for
analysing light gaseous products evolved during the thermal degradation of high-
molecular-weight materials. Our first results'® in this area were promising.

THEORETICAL

Experimental set-up in CCC

In contrast to the conventional technique in which a single amount of a
sample is injected and the detector response recorded, in CCC a sample is injected
sequentally during the experiment or is introduced continuously to the chro-
matograph. The injection sequence follows the pattern of a complicated (random)
signal and the -detector response is cross—correlated with the input signal to
astimate the chromatogram. The injection component of the conventional chro-
matograph must be replaced with a multi-port valve (electric or pneumatic) that is
controlled by a random signal generator. Necessary conditions are digital recording
of the dstector signal and the use of a digital computer to perform the com-
putations.

Usually a pseudo-random binary sequence® (PRBS) generator is used in
CCC. In principle other forms of input sequences could be used*!! but they are
difficult to realize experimentally or the computation time increases markedly.

Relatwnshtp between input and output

‘Let us consider n injections of the sampie with each injection performed
after a time interval A¢. We shall denote the amount of sample at a moment of
time 7 by X,. Thus we obtain the following input sequence, repeated, say / times.

Xl 3evey Xn b X19 s> Xu > Xl: ==-3 Xn 3=~ Xl’"wXu
1 2 3 7
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Let X; be unity if a sample is introduced into the chromatograph and zero if
the injection is a “blank™. )

Measuring the detector voltage at m points of time (after every /_It), we
obtain the output sequence

Yl s YZ 3 soc3 Yt LR ] Yn > *ocy YZ::s REEE | Ym

-This sequence of numbers is fed to the computer for calculations. Because every
injection X, makes a contribution to generating the output voltage ¥;, we can write
the following set of equations:

Y, = X1H1(l)
Yz = Xle(l) -+ XZHI(Z) (1)
Y3 = X\ H(1) + XGH(2) + XGH,(3)

Y, =X H,01) + XCH, (2) + X5H,_(3) +...4+ X, H(n—1) + X, H(n)
Yoo = X1 Hi(n+1) -+ XoH(2) + XGHp :(3) +...+ X Hy(n—1) + X,Hy(n)

Y= + Xy Ho(ln—1) + X H,_(in)
Y“ = + X, uHu(ln)

Here H,(i) is the jth element of the chromatogram corresponding to input X;.

The desired result of computation is a set of chromatograms describing the
changes in sample composition during the experiment (e.g., the chromatograms may
describe the changes in the composition of the evolved gases during the heating of
hjgh-mo'ﬂ'cular-weight material).

Eqgn. 1 is simpler in matrix notation. Recd.llmg the definition of the matrix
product, we obtain

y—2XAa ' (1a)

where X is known as a circulant matrix'>. A circulant matrix is one for which each
row may be obtained from the preceding row by shifting the elements one position to
the right (left), and the element at the end (beginning) of a row is moved to the
begiening (end) of the next row:

XXXy, X
- X = XzXIX,. ace XS]

XoXaosXas ... X,

H,(1) H,2) #,(3) ... H(n) ... H(In) 0 ---0

0  H (1) Hy?) ... Hy(n—1) ...... H(In—1) HyIn) ...0

A=10 0 H)..H(n—2)...... H(ln—2) H(n—1) ...0
0 0 0 ...HA) ... H(In—n+-1) H(In—n-1+2) ... H (In)

The problem with the output matrix ¥ is more complicated because only the
entries that fall along main diagonals of the ¥ (spaced at imtervals z) are
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measurable and the non-diagonal eantries must be properly estimated. Hence the
measurable elements in ¥ are in the following positions in the matrix:

) A Yasg oeee ) RPN 0] -
=10 Y,.... ) VS AT )

It has been shown that an element in row 7/ could be estimated by polynomsl
interpolation®®. The polynomal passes thrcugh a set of entries Y3, ¥rin, ¥reznm s---
according to the degree of the polynomial. A proof of this is given in the appendix.
Although the degree of the polynomial depends on the values of ¥, only low orders
(up to second) are acceptable. Strictly, up to now only the zeroth degree of
polynomials has been used in CCC and this is equiavlent to the assumption that no
changes take place in the sample composition during the CCC experiment.

Hence, using linear interpolation for entries in row i between Y, and

Y,.. we get

Yl.!=(Yi+n_Yt)I:l—:‘Yt i<l<i+n 3)

Sometimes it is difficult to introduce a sample into the chromatograph at the same
frequency that the detector output is measured. Let us assume that there is a2
difference in time kA4t between every injection. It is easy to show that by using suitable
permutations of rows and columns X, it converts into a block diagonal form. On
the diagonals of k, non-zero blocks of the order of n/k are shuated. Non-diagonal
blocks are zero matrices.

Solution of equation 1

if the actual length of the chromatogram is longer than nAt, the end part
of the chromatogram starting at point n+1 overlaps with the start of the chro-
matogram. This sfatement resuits directly from eqn. 1.

It is well known that A should always be found from eqn. la if the iaverse
matrix X 1 exists, but common methods for the solution of egn. 1 are too lengthy
for more than 50-60 points even for a high-speed digital computer. Using Fourier
transforimation, eqn. la can easily be inveried* but if a special form of sampling
regime is used, the resolution of eqn. la is greatly simplified. Several workers have
therefore used a technique in which the sampling regime is determined by the
PRBS. The PRBS has two elements, +1 and —1.

Many interesting and useful properties of the PRBS are described in the
literature. The possible number of members in the PRBS is 2°—1, where p is any
integer and the pattern of +1 and —1 is a sequence such as to give an auto-
correlation function resembling that of the white noise. This means that if we form
an nxn circulant matrix, U, where the first row is a PRBS, the following

equations hold:

00T=@m+1)f—T
07 =T0=0"T=1T0"=1 ' ’ @
T =n?T



CONVENTIONAL AND CROSS-CORRELATION GC ) 149

where T'is 2 matrix full of 41 —s, fis 2 unity matrix and the superscript T indicates
transpose. The geaeration of PRBSs is not trivial and for more details about PRBS
we refer to Annino and GrushkaS. Some examples of PRBS are as follows:

n=3 PRBS={l,1, —1}
n=7 PRBS={l,1,1,—1,1, —1, —1I}

Choosing » — 27 — 1 in eqn. 1, we can perform injections X, according to the
PRBS, e.g., if the corresponding ith member of the PRBS is 1, we inject a sample
(X; = 1), and when it is —1, we do not inject the sample (X; = 0). Thus, using the
PRBS as an injection rule, we can rewrite eqn. la as follows:

=30+ DA ®
Using eqn. 4 we can obtain H:

2 T
=¥ 77 - ©

It should be pointed out that entries of the digital chromatograms H,(7) fall on
diagonals of A, but not on the columns of A. A similar equation was first given by
Laurgeau and Espiau’4, although in practical computation it is more convenient to
calculate / by Hadamard transform!5.15. While eqn. 6 requires »2 additions and sub-
tractions, the Hadamard transform is 2 “fast” transform with n log,n additions and
subtractions and so the result should be obtained more quickly. For the real
number of points in CCC, e.g., 1024, the ratio n?/nlog,n is more than two orders of
magnitude.

CORRELATION NOISE

As was pointed out in the introduction, several kinds of distortions of the
chromatogram appear in CCC. According to Annino and Bullock?, we should call
them the correlation noise because this noise is not a real physical noise but is
generated during the computation process as a result of non-ideality of the output
sequence ¥ or the input sequence X.

Non-reproducibility of injections

If there is a variation in the amounts of samples injected into the chromato-
graph during the cross-correlation experiment, the corresponding elements of the in-
put sequence will differ from unity. Let the difference between the mean value of the
amounts of the samples injected and the éith injection be E; (E; << 1). For example,
when n = 7, we obtain the following input sequence: 1 + E,, 1 + E,, 1 + E;,
0, 1 4 E,, 0, 0. For this case we may assume that all the chromatograms H({),i =1,
2, ..., are identical and fall on the columns of H. Now, for a particular chromato-

gram H(i), eqn. 5 is replaced by
G L ™
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Here E is 2 circulant matrix with the element E,. Aecordmg to the above theory, we
obtain the molutton of eqn. 7as follows- »

2 ) 7
i CUTY = H+———+ OTER | ®

The second term of the nght-hand side of eqn 8 describes the deviation 4H from the
“pure” signal E :

4 ®

As the product of two circulant matrixes is another circulant matrix'’, the conclusion
is that eqn. 9 coincides with eqn. 1a, i.e., the matrix equation with a circalant matrix
According to the construction of eqn. 1a, we should conclude that A8 appears as a
superposition of chromatograms the shape of which is the same as the H but with
intensities that are different and determined by several combinations of sums of the
E,. These “ghost™ chromatograms are shifted cyclically from the origin. When B isa
singlz peak, we can follow the emergence of “ghost™ peaks when the points of injec-
tions—non-injections are separated by & points. The number of the “ghosts” isrand a
distance between two “ghosts” is & points. When A& is more complicated, baseline
instability appears on the chromatogram. This may disturb the result of the analysis
when E, are not small enoegh in comparison with unity.

The variance of the noise on the chromatogram can easily be computed. As the
mean of the AR is AR,

a8 = _t';'xAH’ T a(r + 1) ier

2 s T
n(n +1 gz.: H, z§1 2 zz=:1 U

2 F (0B,

and bceause

z

i=1

Q}

it follows that

AH =0

Now, the variance s&&° is

2
& —AAR = - AATAR
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and from eqn. 9 we obtain

o1 (@TETOy (OB

E T Tm—1D (n ' 1)=
1 1 P

- ey A ey AEA

and for large n, assuming that the standard deviation of E| is s¢

PP
ETENE'Sé

and, because E ETTE = (AE,Y = 0, we finally obtain for the standard deviation s
[ 207hH

Sag = Tz_—{j - Sg (10)

The process of non-reproducibility of the injections was simulated on the com-
puter. Using a random number generator, the areas of the peaks were perturbed and
the resulting cross-correlation functions were calculated. The results are presented in
Figs. 1 and 2. It is evident from Fig. 2 that the relationship between sE) and sg is
linear according to eqn. 10.

Y Vv

Sg =025 n=15 k=16

50 100 150 200 time
Fig. 1. Effect of noan-reproducibility of injections on the de-correlated chromatogram. The “ideal”™
chromatogram consists of the single gaussian peak at 50 enits of time.
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{E)
Say

G015y
0010+

0G0+

0 025 650
Sg ) _
Fig. 2. Dependance of the standard deviation, sf,?, of the noise on the de-correlated chromatogram
on tke mean square error of the injected samples, 7 = 127, & = 2. Solid line, theorctical vatue.

Dezector noise .
in discussing the detector electronics noise, we can present egn. 5 as follows:

-

A=ty

- 0¥+ R)

where R is a vector the elements of which are random numbers R,. A deviation from
the “pure” signal AH appears as follows:

2

A8 = 5

O'R an

Assuming that the mean of the R;s is zero, and the standard deviation is sz, we obtain
the resuit that the mean of 4H is also zero and the standard deviation of 48 is

sm=pamaR_2 12)

n—1 N

Eqgn. 12 is well known in multiplex spectroscopy and in ensemble averaging experi-
ments. The validity of eqn. 12 in CCC was shown in nuemerical simulation experi-
ments'® and attenuation of the noise was also obtained in real experiments?>. Re-
cently, Lub er al.'® reduced the detection limit by a factor of 100 in correlation high-
performance liquid chromatography.

When R is a single spike of detector voltage (a frequent phenomenon when
measuring at extreme sensitivity on the detector signal), it should be regarded as
folows: ' o

P=(0,0,...r,...,0)
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where r is the spike hight. The noise is determined by eqn. 11 and it is easy to calculate
the standard deviation for this case:

Sm=2.r (123)

When r is large, considerable distortion of the signal appears on the calenlated ehro-
matogram.

Linear drift of the detector baseline
A vector of the linear drift of the detector baseline can be expressed as follows:

L, =Sk E=1,2,3,..,n

9 o7y seeg s

where S is the slope. Now, from eqn. 11

2s

48 =y

- O°L

An analytical expression is available for the variance of A8

se¥ — _(—é_l)- [AATAR — (AR
T T 45%n z T
= %=1 [(n iy LTUUL — e (2, U‘EL"Y]
N 1 482 r+-1D)@n+Dne-+-1 n - 1)?
RS (n+1)2[ 6 o 4

_n _(n-{-l)znz]
4

Neglecting small terms we finally obtain for the standard deviation
sap =S V’g’ . a3)
Eqgn. 13 was tested by numerical computer simulation and the results are presented

in Figs. 3 and 4.

Note - .
The derivation of egns. 10, 12 and 13 is mere complicated and formulae are
different if there is a difference in time kA4t after each injection, i.e., the elements in
PRBS are separated by & zeros, but the overall consequences remain.

Eg.,ifk = 2 then

2 VEH a2 as)n
n+1 3
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n=127 k=2
(L)
SaH
0.03 | o
S=10
0.02 T
o
/ N Lw«ia,’ "
0 50 100 time 0S 10 s

Fig. 3. Effect of baseline drift of the detector signal on the de-correlated chromatogram.

Fig. 4. Dependence of the standard deviation, 5§, of the noise on the de-correlated chromatogram
on the slope of the baseline drift, 7 = 127, k¥ = 2. Solid line, theoretical value.

Changes in sample composition

As was meted out in the introduciion, this case is of most interest in our
study. Cerrelation noise caused by sample concentration changes may be dealt with
in two ways. If a chromatogram has one peak, then the changes in the sample con-
centration should be regarded as a non-ideality of injections, but now E; is not a
random variable in eqn. 7. The results of the digital simulation study and real experi-
ments show that the standard deviation of the correlation noise, s$3, depends linearly

on the value of the change, i.e.
Say = aAP (14

where AP is a difference between the maximal and minimal values of the sample
concentration during one PRBS and a = 1.4 for n = 31 and a zeroth-order poly-
nomial approximation of non-diagonal elements in Y is used. As is concluded from
eqn. 14, the value of the correlation noise may be considerable.

Although if the linear approximation for the non-diagonal elements in ¥ is
applied, the power of the correlation noise attenuates considerably. The value of the
attenuation depends on the function approximated and for the linear change in
the sample composition, s{3 = 0, theoretically.

In general, if there is more than one peak on the chromatogram, the problem
should be regarded as an inadequate estimation of ¥. Let AY be the error matnx of
the estimation of non-diagonal elements. Then

A= - 0¥+ 47)

n -+
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and

27 h )
43=n+1 - 0tAY : as)

The standard deviation of AH (along an arbitrary column) is similar to eqn. 12:

4 2
sag = —— * say (16)

vn

where s$3° is the standard deviation of AY along the same column. Although eqgn. 16
does not give the standard deviation of the noise for a particular chromatogram, it
gives a good idea of the expected value of the noise in the chromatograms. From eqns.
15 and 16, it follows that the better the estimation of non-diagonal elements of ¥ the
lower is the correlation noise level. In the next section it is shown that if the chromato-
gram length is about 0.25-0.5 of the half-width of the evolved gas analysis (EGA)
curve (approximated by some common function), the linear estimation according to
eque. 3 is goad.

COMPARISON BETWEEN CONVENTIONAL CHROMATOGRAPHY AND CCC

Usually EGA curves are used to obtain the kinetic constants of the thermal
degradation of polymers according to the common equation for the gas evolution
rate known from thermogravimetry:

E
G-y

where

- W, —-Ww
i W, — W,

is a normalized amount of gas evolved at a temperature 7, W, the initial sample
weight, W, the final sample weight, W the instantaneous weight of the sample, b the
rate of heating and A4, E and »n the Kkinetic constants of the process, viz., frequency
factor, energy of the activation and reaction order, respectively. Conventional methods
for computing the kinetic constants requires precise measurement and recording of
the area under the EGA curve.

Sampling the gases evolved during the thermal degradation of high polymers
into the chromatograph and measuring peak areas is a possible means of obtaining
EGA curves. Usually these curves have peak-like features. The problem is to establish
how many samples one must take in order to recover an EGA peak exactly.

According to the Nyquist theorem, the number of samples was computed for
common peaks'??%. The results are given in Table I. The number of samples depends
on the standard deviation of the detector noise.
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TABLE I
NUMBER OF SAMPLES REQUIRED ON SOME COMMON PEAKS®.20
Function Egquation Standard deviation of noise (ir peak maximum units)
0.1% 1% 10%

Triangular yD=1—lelti <1 360 40 6

0, tl>1
Exponential y(g)=e"1t 4500 330 20
Gaussian y)=e* S 7 4

An analytical expression for the EGA curve is not available if the sample

temperature is linearrly programmed, but to a rough approximation it is more
“exponential” than “gaussian”, i.e., it requires a large number of points for an exact
Tecovery. _
In order to compare conventional chromatography with CCC in terms of
possibility of recovering EGA curves, the process of CCC was simulated on the
computer. A chromatogram was considered to have one peak and the height of the
peak to change according to the functicns listed in Table I. The results of the simula-
tion are presented in Fig. 5. A solid line represents the theoretical function and the
points are the results of digital simulation. A Iinear approximation according to egn.
3 was suitable. The arrows represent the moments at which a single injection of the
sample is possible. The difference between the two following arrows is the actual
length of the chromatogram. As can be seen, CCC is able to revocer the theoretical
curve exactly except in tie region around the peak maximum. Conventional gas
chromatography does not guarantee the required number of points on the curve.

Triangle
1-LIIL T
0.iti>1
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Exponential
y=expl-1tl)

time

Fig. 5. Regeneration of some idealized evolved gas analysis curves by cross-cerrelation chromato-
graphy. Arrows show the moments when single injection of the sample is possible. ——, True value;
O, CCC estimate.

APPENDIX: COMPUTATION OF NON-DIAGONAL ELEMENTS IN THE OUTPUT MATRIX

First let us define i mod (n) as follows:
imod () =i —pn

where 7 and n are integers and p is the largest integer, so that i > pn. Now, a diagonal
element in Y is given by

n
Yimodmyi = fEx Xt -y nymoamy(E —j + 1) a7

This follows directly from egn. 1. A non-diagonal element ¥; j.qcn). i the row i
between columns 7/ and i+n is given by

Yimoama = & Xa-setmoam (0 —j+ 1) (18)

Let ¥ noaem: be a linear function of / that passes through ¥, nogcm.: 2nd

Ymod(u).l+us i-e-, / .
—
T+ ¥i modcmut

?t mod(m).f = [Yi mod(r),i+a — L¢ mod(n).l]
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From eqn. 17, it follows that

Y;mod(n).l = Jé‘l {[H_f(i +n—j+ 1) -
+ Hyi —j+ 1)} X -+ Dmad(m (19)

When H i) is a linear function of i, it follows from egns. 18 and 13 that

Y, mod(m),l — Y, mod(m),.1

i.e., the approximation is exact. If H; () is a non-linear function of i, a higher order
cof polynomials should be used for the approximation of non-diagonal elements,
otherwise an estimation error A ¥ appears that leads to correlaticn noise on the

calculated chromatograms.
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