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CGMPARISQN BETWEEN CONVENTIONAL AND CROSS-CORRELATION 
GAS CHROMATQGRAPHY FOR EJKMJED GAS ANALYSIS 
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SUMMARY 

In polymer chemistry, it is often of interest to know what are the gases 
evolved during the degradation of polymers. Cross-correlation chromatography 
(CCC) permits on-line measurements of an arbitrary number of points on the 
evaluation rate curve for any evolved gas component, but the rapid changes in the 
composition of gases generate noise in the chromatograms calculated, which might 
exceed the detector signal. It is shown that by using a suitable computation a!- 
gorithm it is possible to suppress the correlation noise in the calculated chro- 
matograms. Computer-simulated patterns are presented to show the usefulness of 
CCC in evolved gas analysis and its advantages over conventional gas chromato- 
graphy in l Lhis field. 

INTRODUCTION 

The use of computers in analytical chemistry has increased markedly in the 
last decade. Laboratory-scale digital computers are acquiring a major role in the 
design of Iaboratory instruments and several new computer-based analytical tech- 
niques have been developed. A typical example is Fourier transform spectroscopy, 
in which each resolution element is measured simultaneously, i.e., the-information or 
a signal channel is multiplexed, and a computer calcglates the desired spectrum. fc 
chromatography, this kind of experiment has been known since the first report of 
Izawa et al.’ of the technique of cross-correlation chromatography (CCC). Although 
several examples of the application of the techniques are knownU, CCC has never 
been used extensively. UnIess applications can be found that cannot conveniently be 
carried out by standard chromatographic methods, CCC will not be used sub- 
stantially. An&her reason for the limited use of CCC is, in our opinion, the fact that 
altbougb the theory of the method is well established, its mathematical relationships 
are not simple to understand and deter workers who might otherwise be potential 
users, 

The first part of this paper is therefore devoted to a simph&d presentation of 
the theory. The cross-correlation theory usually formulated via a convolution integrals 
is here formulated via a circulant matrix. This approach seems to be more natural 
because computations in CCC are performed on a digital computer and con- 



tinnous functions must be replaced with the sequence of numbers. Only an 
elementary knowledge of matrix algebra is assumed by the reader. 

The second part of the paper deMs with the acmsacy of CCC. The baseline 
instability of the correlated chromatograni was discovered in previous experiments on 
CC-. This phenomenon was explained as an effect of changes in sampIe con- 
centrati~n’~ during the experiment. Because these changes are frequently of interest 
(e.g., in evolved gas analysis), the question arises of whether it is possible to detect 
accurately the changes in sample concentration in the presence of correlation noise. 
The problem of correlation noise is discussed here in a stricter form. It is shown that 
under some conditions “ghost” peaks may appear on the decorrelated chromatogram. 
We obse_rved the “ghost” peaks during our first CCC experiments. It is interesting 
that “ghost” peaks were also observed in Hadamard transform spe~troscopy~, the 
mathematical basis of which is similar to that of CCC. The other distortions of the 
detector signal that arc dealt with here arc linear baseline drift in the original (not 
decorrelated) chromatogram and the effect of high-frequency noise. For each of 
these distortions we obtain an equation that determines the standard deviation of the 
noise on the de-correlated chromatogram. 

The third part of the paper discusses a possibie new application of CCC in 
evolved gas analysis. It is shown that CCC should be particuIarly valuable in this 
field and it has substantial advantages over conventional chromatography for 
analysing light gaseous products evolved during the thermal degradation of high- 
molecular-weight materials. Our first results1o in this area were promising. 

THEORETICAJL 

fiperiinentai set-up in CCC 
In contrast to the conventional technique in which a single amount of a 

sample is injected and the detector response recorded, in CCC a sampIe is injected 
sequentally durin, * the experiment or is introduced continuously to the chro- 
matograph. The injection sequence follows the pattern of a complicated (random) 
signai and the- -detector response is crosscorreiatcd with the input signal to 
estimate the chromatogram. The injection component of the conventional chro- 
matograph must be repIaced with a multi-port valve (electric or pneumatic) that is 
controUed by a random signal generator. Necessary conditions are digital recording 
of the detector si@ and the use of a digital computer to perform the com- 
putations. 

Usually a pseudo-random binary sequences (PRBS) generator is used in 
CCC. In principle other forms of input sequences could be ~sed~.‘~ but they are 
diEcult to realize experimentally or the computation time increases markedly. 

Relationship between input and output 
-Let us consider n injections of the sampie with each injection performed 

after a time interval A f. We shall denote the amount of sample at a moment of 
time i by-X,_ Thus we obtain the following input sequence, repeated, say I times. 

x 1 ,---, &, Xl, ---, x,, x-1, --.)X, )...) x, ,... Jr* 
1 2 3 I 



Let X, be unity if a sampie is introduced into the chromatograph and zero if 
the injection is a “blank”. 

Measuring the detector voltage at m points of time (after every dt), we 
obtain the output scquencc 

Y, , Yz , . . . . Yg , ..-, Ya ) . .., Yz, , . . . ) Y, 

This sequence of numbers is fed to the computer for calculations. Because every 
injection X, makes a contribution to generating the output vohage Y,, we can write 
the following set of equations: 

Y, = JMW) + ~2Kl-m -I- X$7,-,(3) +---+ X,-&(~--I) f X&(4 
Y a-S-1 = X,K,(nfl) + x,%(2) + &Hn-x(3) f---f X,-,H,(n--1) -I- X,H,(n) 

Here HAi) is the jth element of the chromatogram corresponding to input X,. 
The desired result of computation is a set of cbromato_mms describing the 

changes in sample composition during the experiment (e.g., the chromatograms may 
describe the changes in the composition of the evolved gases during the heating of 
high-mo!ecular-weight material). 

Eqn. 1 is simpler in matrix notation. Recalling the definition of the matrix 
product, we obtain 

where 2 is known as a circulant matrix”. A circulant matrix is one for which each 
row may be obtained from the preceding row by shifting the elements one position to 
the right (Ieft), and the element at the end (beginning) of a row is moved to the 
beginning (end) of the next row: 

x,.x,x,_, 

I 
. . . x, 

s = x,x,x, ._.x, -------__...____.._-___.-- 
xX,-,x,_, .-. Xl 1 

HI(l) J%(2) W(3) --- K(n) 

[ 

H,(l) &(2) ___ H&z-l) :::::: 
&(W 0 0 

8= : 
H,(ln-1) H,(m) 1:: 0 

0 H,(l) . . . H&z-2) . . . . . . H3(Zn-2) H,(ln--1) ___ 0 
-._-_-_________-__-__________._______________________.--.___-_________-____--------------~____-_~~~-~_~~_----_---~------- 

0 0 0 _.. H,(l) . . . . . . H&-nfl) H,(ln--n+2) . . . 1 H,,(h) 

The problem with the output matrix Yis mot-c complicated because only the 
entries that faIlI along main diagonals of the Y (spaced at intervals R) are 



measurable and the non-diagonal entries must be properly estimated. Hence the 
measurable elements in pare in the following positions in the matrix: 

It has been shown *tit an element in row r’ could be estimated by polynomal 
interpo’&tiorF. The poIynomal passes through a set of entries Yt, Y1+=, Yr+z, ,._. 
according to the degree of the polynomial. A proof of this is given in the appendix. 
Although the degree of the polynomial depends on the values of I:, only low orders 
(up to second) are acceptable. Strictly, up to now only the zeroth degree of 
polynomials has been used in CCC and this is equiavlent to the assumption that no 
changes take place in the sample composition during the CCC experiment. 

IIence, using linear interpolation for entries in row i between Yi and 
Y **.TY we get 

l--i 
Y,_, = (Yrtn - Yf) - f n 

Yf itltif-n (3) 

Sometimes it is diflicult to introduce a sample into the chromatotimph at the same 
frequency that the detector output is measured. Let us assume that there is a 
difference in timekdt between every injection. It is easy to show that by using suitable 
permutations of rows and columns 8, it converts into a biock diagonal form. On 
‘the diagonals of k, non-zero blocks of the order of n/k are skuated. Non-diagonal 
blocks are zero matrices. 

Solution of epation I 
if the actual length of the chromatogram is longer than n~Ir, the end part 

of the chromatogram starting at point n-i-1 overlaps with the start of the chro- 
matogram. This sfatement results directly from eqn. 1. 

It is well known that @ should always be found from eqn. la if the inverse 
matrix 8-l exists, but common methods for the solution of eqn. I are too Iengthy 
for more than 5060 points even for a high-speed digital computer_ Using Fourier 
transformation, eqn. la can easily be inverted4 but if a special form of sampling 
regime is used, the resolution of eqn. la is greatly simplified. Several workers have 
therefore used a technique in which the sampling regime is determined by the 
PRBS. The PRBS has two eIements, + 1 and - 1. 

Many interesting and useful properties of the PRBS are described in the 
literature. The possible number of members in the PRBS is 2p-l, where p is any 
integer and the pattern of f 1 and -1 is a sequence such as to give an auto- 
correlation function resembling that of the white noise. This means that if we form 
an ,zxn circulant matrix, 0, where the first row is a PRBS, the following 
equations hold: 

(4) 
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where p is a matrix fill of + I -s, f is a unity matrix and the superscript f indicates 
transpose. The generation of PRBSs is not trivial and for more detaiis about PRBS 
we refer to Annino and Grushka5. Some examples of PRBS are as follows: 

lE= 3 PRBS = (1, I, -I) 
n= 7 PRBS = {l, 1, 1, -1, 1, -1, ,I} 

Choosing n = 2p - 1 in eqn. 1, we can perform injections X, according to the 
PRBS, e.g., if the corresponding ith member of the PRBS is 1, we inject a sample 
(X, = 1), and when it is - 1, we do not inject the sample (X, = 0). Thus, using the 
PRBS as an injection rule, we can rewrite eqn. la as follows: 

Using eqn. 4 we can obtain A: 

fl= 
(II f 1) - *=* 

(6) 

It should be pointed out that entries of the digital cbromatograms Hj(i) fall on 
diagonals of A, but not on the columns of fi. A similar equation was first given by 
Laurgeau and Espia@, although in practical computation it is more convenient to 
calculate fi by Hadarnard transform *sJs_ While eqn. 6 requires nt additions and sub- 
tractions, the Hadamard transform is a “fast” transform with n log,n additions and 
subtractions and so the result should be obtained more quickly. For the real 
number of points in CCC, e.g., 1024, the ratio n2/nlog,n is more than two orders of 
ma-titude. 

CORRELAIION NOISE 

As was pointed out in the introduction, several kinds of distortions of the 
chromatogram appear in CCC. According to Annino and Bullock’, we should call 
them the correlation noise because this noise is not a real physical noise but is 
generated during the computation process as a result of non-ideality of the output 
sequence P or the input sequence 8_ 

Non-reproducibility of injections 
If there is a variation in the amounts of samples injected into the chromato- 

graph during the cross-correlation experiment, the corresponding elements of the in- 
put sequence will differ from unity. Let the difference between the mean value of the 
amounts of the samples injected and the ith injection be EI (EI < 1). For example, 
when n = 7, we obtain the following input sequence: 1 f E,, 1 f E,, 1 + &, 
0, 1 f E2, 0,O. For this case we may assume that all the chromatograms H(i), i = 1, 
2 3 ---5 are identical and fall on the columns of &_ Now, for a particular chromato- 
gram B(i), eqn. 5 is replaced by 

(7) 
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Hens l? is a ezimdant matrix with the ekment El. According to the ahove the&y, we 
obtain the resolution of eqn. 7 as follows: _ 

The second term of the right-hand side of eqn. 8 describes the deviation A& from the 
“plxx? signal a: 

As t&e product of two circular& matrixes is another ckculant matrixl’, the conclusion 
is that eqn. 9 coincides with eqn. la, i.e., the matrix equation with a ckcdapt matrix 
According to the construction of eqn. la, we should conclude that AB appears as a 
sqerposition of chromatograms the shape of which is the same as the R but with 
intensities that are diEerent and determined by several combinations of sums of the 
Et. These “ghost” chromatograms are shifted cyclically from the origin. When R is a 
singk peak, we can follow the emergence of “ghost” peaks when the points of icjec- 
tions-non-injections are separated by k points. The number of the “ghosts” is n and a 
distance between two “ghosts” is k points. When I? is more complicated, baseline 
instability appears on the chromatogram. This may disturb the result of the analysis 
when Et are not Sd enongh ira comparison with unity_ 

The variance of the noise on the chromatogram can easily be computed. As the 
mean of the AR is AR, 

and because 

it follows that 

AR=0 

(El@- how, the vmance sAa 1s 



and from eqn. 9 we obtain 

and for large n, assuming that the standard deviation of E, is S, 

ET&+ -& 

and, because El=‘&? = (dEJ2 = 0, we finally obtain for th$ standard deviation ~$2 

The process of non-reproducibility of the injections was simulated on the com- 
puter. Using a random number generator, the areas of the peaks were perturbed and 
the resulting cross-correIation functions were calculated. The results are presented in 
Figs. 1 and 2. lt is evident from Fi g_ 2 that the relationship between ~22 and s, is 
liuear according to eqn. IO. 

I 
s==o.25 t-i=7 k=32 

h I I 

V 
A 

V 

I 

50 1ClC liicl 200 time 
Fig- 1. Effect of non-reproducibility of injections on the t&z-correlated cbromatogram. The “i&al 
chromatogram consists of the sir&e gaussian peakatSOunitsoftime_ 



Fig, 2 Dependence of the 8t2dard devi2tion. &.j, of the noise OE the de-correlated chroEIatogr8nI 
on tte man square error of the iajected samples, R = 127. k = 2 Solid line, tkorctical value. 

DerecrJr noise 
in discussing the detector electronics noise, we can present eqn. 5 as follows: 

where R is a vector the elements of which are random numbers RI. A deviation from 
the “pu19 signal AfTI appears as follows: 

Assuming-that the mean of the R,s is zero, and the standard deviation is s,, we obtain 
the result that the mean of Al? is also zero and the standard deviation of Afi is 

CR) 

Y 
A&A&i 2 

s&i= - 
n-l =z - sR (12) 

Eqn. 12 is well known in muhiplex spectroscopy and in ensemble averaging experi- 
ments. The validity of eqn. 12 in CCC was shown in numerical simulation experi- 
ment@ and attenuation of the noise was also obtained in real exp&iments2*‘. Re- 
cently, Lub et ~1.~~ reduced the detection knit by a factor of 100 in correlation high- 
performance liquid chromatography. 

When a is a single spike of detector vokage (a frequent phenomenon when 
measuring at extreme sensitivity on the detector signal), it should be regarded as 
f(Z!Iows: 

R = (0, 0, . . . . P, -.., 0) 
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where r is the spike hight. The noise is determined by eqn. 1 I and it is easy to calculate 
the standard deviation for this case: 

When r is large, considerable distort& of the sisal appears on the calculated chro- 
matogr&ll. 

Linecv c&$t of the detector baseline 
A vector of the linear drift of the detector baseline can be expressed as follows: 

Lk = Sk k = 1,2,3, . . . . n 

where S is the slope. Now, from eqn. 11 

An analytical expression is available for the variance of Aft: 

<Lx? 

SAa = (n _! 1) 
[Afl=A& - n(Am] 

1 

[ 

4sL 
* L’uiJ=t - 

4% =- 
R-l (n i- Q2 (j G&)f ni(n + 1)2 .z=1 

1 49 
= 

[ 
(n t 1) (2n t 1) n(n + I) n*(n + 1)2 - 

(n - 1) (n i- I)* 6 4 

n 
-7. 

(n f I)* nz 
n- 4 I 

Neglecting small terms we finally obtain for the standard deviation - 
sz; = s v n 

3 (13) 

Eqn. 13 was tested by numerical computer simulation and the results are presented 
in Figs. 3 and 4. 

Note 

The derivation of eqns. 10, 12 and 13 is more complicated and formulae are 
different if there is a diEerence in time kAt a&r each injection, i.e., the elements in 
PRBS are separated by k zeros, but the overall consequences remain. 

E.g., if k = 2 then 

UD Wm 
SAa = -. 

IZfl 
sE and sLL; = 2s v- 5 
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0 50 100 time 

Fig. 3. ElRct of baseline drift of the detector signsI on the de-correlated ChromatOgX3Ul. 

Fig. 4. DepaAme of the stx&rd deviation, ~52, of the noise on t&e de-correlated chromatogmm 
on the slope of the baseline drift, n = 127, k = 2 Solid line. theoreticat value. 

Changes in sample composition 
As’ was printed out in the introduction, this case is of most interest in our 

study. Correlation noise caused by sample concentration changes may be dealt with 
in two ways. If a chromatogram has one peak, then the changes in the sample con- 
centration should be regarded as a non-ideal&y of injections, but now EI is not a 
random variable in eqn. 7. The resuhs of the digital simulation study and real experi- 
ments show that the standard deviation of the correlation noise, ~52, depends Iinearly 
on the vzdue of the change, i.e. 

(PI 
s&z =QAP (14) 

where 4P is a difference between the maximal and minimal values of the sample 
concentration during one PRBS and a = l-4 for n = 31 and 2 zeroth-order poly- 
nomiaI approximation of nondiagonal elements in Pis used. As is concluded from 
eqn. 14, the value of the correlation noise may be considerable- 

Although if the linear approximation for the non-diagonal elements in P is 
applied, the power of the correlation noise attenuates considerably. The value of the 
attenuation depends on the function approximated and for the linear change in 
the sample composition, $2 = 0, theoretically. 

In general, if there is more than one peak on the chromatogram, the problem 
shouId be regarded as an inadequate estimation of 2 Let A Y be the error matrix of 
the estimation of non-diagonal elements. Then 
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The standard deviation of AH (along an arbitrary cohunn) is similar to eqn. 12: 

where ~5~2’ is the standard deviation ofd Y aIong the same column. Although eqn. 16 
does not give the standard deviation of the noise for a particular cbromatogram, it 
gives a good idea of the expected value of the noise in the cbromatograms. From eqns. 
15 and 16, it follows that the better the estimation of non-diagonal eiements of Pthe 
lower is the correlation noise level. In the next section it is shown that if the chromato- 
gram Iengtb is about 0.25-0.5 of the half-width of the evolved gas analysis (EGA) 
curve (approximated by some common function), the linear estimation according to 
eqn. 3 is good. 

CO~MPARISON BETWEEN CONVENTIONAL CHROh&4TOGRAPHY AND CCC 

Usually EGA curves are used to obtain the kinetic constants of the thermal 
degradation of polymers according to the common equation for the gas evolution 
rate known from thermogravimetry: 

dx A -E 
_=-*e 

dT b 
R=(I -xy 

where 

is a normalized amount of gas evolved at a temperature T, W, the initial sample 
weight, W’ the &al sample weight, W the instantaneous weight of the sample, b the 
rate of heating and A, E and n the kinetic constants of the process, viz., frequency 
factor, energy of the activation and reaction order, respectively_ Conventional methods 
for computing the kinetic constants requires precise measurement and recording of 
the area under the EGA curve. 

Sampling the gases evolved during the thermal degradation of high polymers 
into the chromatograph and measuring peak areas is a possible means of obtaining 
EGA curves. Usually these curves have peak-I&e features. The problem is to establish 
how many samples one must take in order to recover an EGA peak exactly. 

According to the Nyquist theorem, the number of samples was computed for 
common peakslgJo. The results are given in Table I. The number of samples depends 
on the standard deviation of the detector noise, 
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TABLE 1 

NUh-lBEEt OF SAhipLEs REQUlRED ON SO-ME COMMON PEAKS”=’ 

Fwrcn‘oll Eplmkn Stmrrdmd deltriztian of noire (in pea+ mankum units) 

0.1% 1% 10% 

TCZUlgdS y(t) = 1 - Iti, iti < 1 360 $0 6 

y(t) = fh! 
ItI > 1 

ExporLedal 4sJo 3m 20 
GaIlsian y(f) = e-1: 9 7 4 

An analytical expression for the EGA curve is not available if the samp!e 
temperature is linearrly programmed, but to a rough approximation it is more 
“exponential~ than “gaussian”, i.e., it requires a large number of points for an exact 
recovery. 

In order to compare conventional chromatography with CCC in terms of 
possibility of recovering EGA curves, the process of CCC was simulated on the 
computer. A chromatogram was considered to have one peak and the height of the 
peak to change according to the functicns listed in Table I. The results of the simula- 
tion are presented in Fig. 5. A solid line represents the theoretical function and the 
points are the results of digital simulation. A linear approximation according to eqn. 
3 was suitable. The arrows rep_msent the moments at which a single injection of the 
Sample is possible_ The difference between the two following arrows is the actual 
Ien,@b of the chromatogram. As can be seen, CCC is able to revoter the theoretical 
curve exactly except in the region around the peak maxinmm. Conventional gas 
chromatopphy does not guarantee the required number of points on the curve. 

time 

Fig. 5. 

f I t t ? f t 
time 
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t t t t t t t 
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Fig. 5_ Regezxratim of some idealized evolved gas analysis tunes by crossaxrelation cbromzto- 
graphy. Arrows show the moments when single injection of the sample is possible. -, True value; 
0. CCC estknte. 

APPENDIX: COMP~ATION OF NON-DIAGONAL ELEMENTS INTHEOUTPUTMATRIX 

First let us define i mod (n) as follows: 

imod(n)=i--pn 

where i and n are integers and p is the largest integer, so that i > pn. Now, a diagonal 
element in 3is given by 

(17) 

This follows directly from eqn. 1. A non-diagonal element Yf maaCnI.r in the row i 
between columns i and i+n is given by 



From eqn. 17, it follows that 

When H,(i) is a linear function of i, it follows from eqns. 18 and 19 that 

E mod<n).E = r, mOdCn>.l 

i.e., the approximation is exact. If Hj (i) is a non-linear function of i, a higher order 
of polynomials should be used for the approximation of non-diagonal elements, 
otherwise an estimation error d P appears that leads to correlation noise on the 
calculated chromato~. 

REFERENCES 

1 IL Izawa, K. Furuta, II_ Fujiwxa and N. Suyama, Znd CZ&z. selge, 32 (1967) 223. 
2 H. C. Smit, Chromntogmphia. 3 (1970) 515. 
3 G. C. AMOS and K. R Godfrey, Z~~rwn. TecZwwl., February (1973) 33. 
4 J. B. Phillips and M. F. Burke. X C&xrza&g~-_ Sci., 14 (1976) 495. 
5 R. Annit atxd E. Grushka, J. Chromfugr. Sci., 74 (1976) 265. 
6 R. Godfrey and M. Devenish, &Z~QS. Conrrof, 2 (1969) 228. 
7 R_ Annino and L. E. Bullock, in S. G_ Perry and E_ R Adlard (Editors), Car Chromarogrcphy 

1972, Appki Sciezrce Publishers, London, 1973. p_ 1.71 
8 R. Annino and L. E. Btiock, Aml. C&WI., 45 (1973) 1221. 
9 lM_ N. Tai, M. Harwit and N. J. 14 

Kzdjtuand and E Kc&k, J Chromarogr., 171 (1979) 243. 
11 C. Laurgeait and F. Barras, CIironzatographio, 8 (1975) 373. 
12 R. Belbnan, ~!ztroducltin to &Za&f_x Analysis, McGraw-Hill, New York, Toronto. Loodoo, 1960. 
13 JX. Hofiman, M. M. Gupia and P. N. Nikiforuk, Proc. ZRSL Elecrr. Gg.. 119 (1972) 237. 
14 C. Laurgeau and B. Espizu, J. Chim. Phys., 71 (1974) 1143. 
15 M. Kaljurand and E. KOtLik. ChromatograpKiz, 11 (1978) 328_ 
16 R. Kaiser, 1. Magn. Rexon., 15 (1974) 44. 
17 H_ F_ Tarilmet. Vwzfeti v Lineir3ljju Konedurotnermju Teor@u Spektrometrii (Zntroductbn to :he 

Theory of the Linear ZGzite Speca?omeny~, V&us, Tallinn, 1975. 
18 Tj. TIL Lub. H. C. Smit and H. Pop_pe, J_ Chron~~ogr_. 149 (1978) 721. 
19 P. C. Kelly and G. Horiick, Anal. Chnz_, 45 (1973) 518, 
20 Y. Tkatch, Zh. Fiz. k%n.. 51 (1977) 1916. 


